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10.0 ESTIMATING SURVIVAL

10.1 Introduction                                

There is a considerable variety of ways to estimate survival.  Many o f
the available methods come as by-products of methods designed primarily f o r
measuring population size (Chapter 8), and are thus best discussed i n
reference to that problem.  However, knowledge of survival is su f f i c i en t l y
important to justify specific studies without special reference to d e t e r m i n i n g
population size. Such efforts are usually dependent on some form of ma r k i n g
or tagging.  Since marking is almost always a very expensive and t i m e -
consuming operation, it should, wherever possible, also result in estimates o f
population numbers. However, we will here be concerned mainly w i t h
measuring survival.

A survival rate is necessarily defined for some unit of time, thus:

                       Survival rate =  
N u m b e r  a l i v e  a t  e n d  o f  p e r i o d

 N u m b e r  a l i v e  a t  s t a r t  o f  p e r i o d  

            = proportion surviving the period.

When dealing with populations exploited by hunting or fishing it i s
frequently necessary to consider two components of mortality, one due to t h e
exploitation and the second to all other causes of death ("natural" mor ta l i t y ) .
When the two different forces of mortality exist at the same time, only one c a n
actually result in a given death, so it is customary to speak of "compet ing"
sources of mortality or "competing risks."

If a population is "closed", that is, has no gains or losses f r o m
immigration, births, or emigration, the simplest model for mortality o r
survival is just the binomial distribution.  If N represents initial popu la t ion
size, and p the proportion dying during some interval, then the expected
number of deaths is simply Np, and the probability of various numbers o f
deaths is given by terms of the binomial distribution.  Similarly if f r ac t i ons
can be assigned to exploitation and to natural mortality, then the model
becomes a multinomial distribution.

In practice it is necessary to be cautious in using a simple model.
Mortality seldom operates as a simple random variable as required by t h e
model. In exploitation in particular, there is usually a tendency for e v e n t s
resulting in deaths to come in "bunches", violating the postulate o f
independence. Furthermore, mortality almost always varies seasonally, a n d
exploitation usually is restricted to particular seasons.  Also, when animals a r e
tagged in groups, they are likely to stay clustered to some extent.

Another point is that we rarely know the total population size or t h e
total numbers of deaths, and must estimate survival or mortality through some
sampling process.  In spite of all of this, the binomial model fr e q u e n t l y
provides a useful starting place (but usually not with total population as a
parameter).  Certain special populations do fulfill many of the r e q u i r e m e n t s
for the binomial and multinomial models.  These are normally expe r imen ta l
populations being subjected to, e.g., chemicals to determine lethal effects o f
various dosages ("bioassay").
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The principal methods for estimating survival or mortality may be
categorized as follows:

I . From tagging or marking

A. Multiple recoveries of marked individuals

1. Capture-recapture methods.  As mentioned above, estimates o f
survival or mortality are usually auxiliary to population estimation.  These
methods usually involve a series of captures and releases of individuals.

2. Multiple recoveries of individuals all tagged at the same time. Not a
commonly used technique.

B. Single recovery of a marked individual.  Normally the tag recovery comes
coincident with death of the individual.

1. Recovery effort variable.  For the most part, this pertains t o
exploitation, and the effort expended in hunting or fishing is that cons idered
as devoted to recovery.

2. Constant recovery effort.  Very often this is a necessary, but un tes ted
assumption.  It may be reasonably acceptable where tag recovery depends o n
accidental death of individuals.

a. Exact time of death known.  This is an area not much exp lored
in biological studies, but well known industrially under the heading of " l i fe -
testing", where the survival of interest is that of some manufactured p roduc t
(e.g., light-bulbs).

b. Time of death not known exactly.  This is the category i n t o
which the bulk of methods in current use fall.

II. Other methods

A. Catch-effort methods.  In commercial fisheries studies, much attention h a s
been paid to assessing population size through measuring the rate of c h a n g e
in catch with accumulated effort.  It may also be possible to estimate mor ta l i t y
at the same time.

B. Change-in-ratio methods.  Also known as "dichotomy" or "survey- remova l "
methods, these depend on knowing the magnitude of a removal and o b s e r v i n g
a ratio before and after the removal.  Survival may be concurrently estimated.

C. Catch-curves or kill curves.  The age structure of animals taken in h a r v e s t s
may provide some notion of the year-to-year survival rate. It is usua l l y
necessary to assume constant population size and constant annual survival.

It is perhaps worthwhile to mention life tables here.  In the o r i g i n a l
application, a life table served to record survival information down t h r o u g h
the history of a particular group of individuals or to reflect the current s ta te
of survival rates in a population.  In ecological studies there has been a
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common tendency to arrange the returns from tagging in a life table, and t h i s
has led to some rather dubious calculations.

10.2 A single-recovery model                                                      

If a group of tagged individuals are released together and have a
constant survival rate thereafter, then a fairly simple model suffices a n d
permits various useful estimates.  What happens when the assumption o f
constant survival does not hold is not known in any detail, but some r o u g h
guidance is available. It should be noted that the frequent practice o f
estimating annual survival from tag recoveries may not be im p o r t a n t l y
influenced by seasonal changes in survival, so long as the annual r a t e
remains relatively constant.  The other major use of single-recovery data i s
for relatively short-term periods (usually in seasons of exploitation) w h e r e i n
it may reasonably be assumed that survival is approximately constant.

The most thorough analysis to date of the relevant model is one b y
Chapman and Robson (1960) which actually pertained to catch-curves, but a lso
applies directly to tag recoveries, as pointed out by Paulik (1962).  We w i l l
follow that analysis here.  Let:

No = initial population (number tagged or number alive at the t i m e
analysis starts -- this last assumption may be used to avoid effects of a h i g h e r
early mortality).

 s = constant survival rate (per unit of time)

 λ  = fraction of number currently alive that are caught and reported ( i n
a given time unit).  This may be the product of two constants, one b e i n g
"catchability" and the second, reporting rate. Note that λ  is used e l s e w h e r e
here as a rate of population change, but is used in this case to correspond t o
the paper of Chapman and Robson (1960).

nx  = number of tagged individuals recovered in xth time u n i t .
Confusion in notation can arise here, depending on how time units a r e
numbered. One naturally speaks of the "first" time unit, but it is useful to let x =
0,1,2,..., and to suppose that no represents those individuals who fail to s u r v i v e
through the first time unit. Under the above assumptions and definitions, i t
turns out that the probability of recovering a given individual in the xth t i m e
unit follows a geometric probability distribution:

                                               px = (1-s)sx                                   x = 0,1,2, ....          (10.1)

and the expected numbers of recoveries are:

                                             E(nx) = Noλsx                                 x = 0,1,2,...            (10.2)

This seems intuitively obvious, since if λ represents "catchability" the e n t i r e
population is available in the first year, but only survivors are "at risk" i n
subsequent years.
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The actual recoveries in any particular time unit constitute a b i nom ia l
random variable, with probability given by (10.1) above, so that:

             Pr{nx individuals recovered} = 



No

nx
 (λsx)  nx(1-λsx)No-nx               (10.3)

If one wants to consider the distribution of recoveries over a set of t i m e
periods, then it is possible to consider the conditional distribution as b e i n g
approximately a multinomial distribution.  That is, for a fixed total sample
n = no + n1 + ... + nk , the joint probability distribution
                                    Pr{ no,n1,n2, ... ,nk | n}
is a multinomial with the Pi  corresponding to equation (10.1) above.

Chapman and Robson (1960) have shown that the best estimate for s is:

                                                          s^   = 
T

n+T-1                                                       (10.4)   

w h e r e :
                                    n = no + n1 + n2 + ... + nk
                                    T = n1 + 2n2 + 3n3 + ... +knk
That is, n is just the total recoveries, and n + T is effectively the "total y e a r s
survived" after tagging.  An estimate of the variance is:

                                                        v(s^  ) =  ŝ ( ŝ  - 
T-1

n+T-2)                                     (10.5)   

It is important to note that the method assumes that essentially all t agged
individuals are dead when the analysis starts--a modified formula for pa r t i a l l y
complete recoveries will be described later.

The Chapman-Robson estimator is nearly identical to one generally
attributed to D. Lack, but first studied mathematically by Haldane (1955). It is:

so the two estimators will differ only for small samples.  The variance ob ta ined
by Haldane is (method of maximum likelihood):

a little algebra permits comparison of the two variance estimates:

                           
Chapman-Robson var iance
Lack -Ha ldane  va r i ance   = 

n (n+T-1)
(n-1) (n+T-2)                       (10.8)  

√s
T

n T
=

+
                                                        (10.6)  

v s
s s

n
(√)«

( )
( . )= −1
10 7

2
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which shows that the Lack-Haldane estimate will be a little smaller than t h e
"best" estimate, but not importantly so if the number of recoveries is at a l l
s izable.

A simple way to obtain the Lack-Haldane estimator is to use equa t i on
(10.2) and obtain expected values for n and T as follows:

                                E(n) = E(no) + E(n1) + ... = Noλ (1 + s +s2 + ....)

and summing the infinite geometric series, we have:

                     E(n) = 
Noλ
1-s           E(T) = E(Σxnx) = Noλ(0 + s +2s2 + ....) =  

N s

s
oλ

( )1 2−
If the "mean age at death" is defined as:

                                                                        x
_
   = 

T
n   

then substituting expected values for T and n:

                                                  
E(T)
E ( n )   = 

s
1 -s         and   ŝ   = 

T
n+T                                (10.9)   

Example 10.1 Chapman-Robson survival estimate

As an example of the use of equations (10.4) and (10.5) we
consider some data on band recoveries from adult Canada geese
(Rutherford, 1970:27) banded as adults in the Arkansas Valley of
Colorado in the 1950-51 season.  A total of 344 geese were banded, with
recoveries in subsequent years as follows:

             Year of recovery                 Number of
             following banding               recoveries                                                

x nx
o 4 5
1 2 3
2 1 9
3 1 0
4 7
5 1 2
6 5
7 3
8 3
9 2

1 0 2
1 1 0
1 2 1
1 3 1
1 4 0
1 5 1                                                                             

                                         Total recoveries (n) 1 3 4

                         T=23+2(19)+3(10)+4(7)+5(12) + ... +15(1) = 332
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                                     ŝ   = 
T

n + T - 1    = 
3 3 2

1 3 4 + 3 3 2 - 1    = 0.714

                         v(ŝ  ) =  ŝ( ŝ  - 
T - 1

n + T - 2)   = 
3 3 2
4 6 5 (

3 3 2
4 6 5 - 

3 3 1
4 6 4)   = 0.0004401

so that the standard error of the estimated variance is

(.0004401)1/2 = 0.021 and approximate 95 percent confidence limits on
the survival estimate are given by .714   +   2(0.021) or 0.672 to 0.756.

10.3 Further estimators                                           

One very simple procedure is to consider the fraction no /n, w h i c h
represents the fraction dying in the first time interval and thus estimates a
mortality rate.  Conversely, survival can be estimated as:

                           so' = 1 - 
no
n    = 

n-no
n    = 

n 1  +  n2  +  . . .  +  nk
n o  +  n1  +  n2  +  nk                            (10.10)   

 where nk  represents the oldest group from which any recoveries a r e
obtained (we again assume all tagged individuals are dead before ca lcu la t ions
begin, so no new recoveries can be expected).  The above estimate is a t t r i bu ted
to Heincke (1913) and a minor modification (dropping nk  from t h e
denominator of the right-hand expression) yields an estimator proposed by C.
H. N. Jackson (1939).

The Heincke estimate can readily be treated statistically, inasmuch as,
for a given total number of recoveries (n), the probability that a p a r t i c u l a r
individual is recovered in the first year is just p = l-s so the distribution of t h e
number of first year recoveries (no) is binomial:

                       Pr{no recoveries in 1st year} =  



n

no  (1- s)  no sn-no              (10.11)

so that the expected number is:
                                                          E(no) = n(1 - s)
which gives the estimate of equation (10.10).  The usual binomial estimate of a
variance of a proportion then gives a variance as:

                                                        v(s'o) = 
s(1 - s)

n                                               (10.12)  

The importance of this result arises by comparison with equation (10.7).  T h e
ratio of the two variances is:

                                                            
v(s'o)

v ( ŝ)
   =  

1
1

10 13
− s

                                             ( . )

which amounts to a rather remarkable state of affairs, if one stops to cons ide r
the substantial costs involved in tag and recovery studies.  Supposing a n n u a l
survival to be on the order of 50 per cent, equation (10.13) shows that t h e
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variance obtained from the Heincke method will be about double that ob ta ined
from the preferred methods (Chapman-Robson or Lack-Haldane).  This t h e n
says that choice of the wrong equation amounts effectively to throwing a w a y
half of one's hard earned information, and the older literature abounds w i t h
examples where the Heincke estimate is used when the better estimate i s
ava i lab le .

10.4 Analysis of incomplete data                                                           

In many applications it is necessary to estimate survival from only p a r t
of the data.  Perhaps the most frequent case is when the investigator c a n n o t
afford to wait until nearly all recoveries are back, but must proceed w i t h
results from the early recovery periods.  Calculations depend on an equa t i on
analogous to (10.9) which is:

                                              
T
n     = 

s
1  -  s    - 

(k+1)sk+1

1 -  sk + 1                                           (10.14)    

in which k represents the last recoveries available, and
                                                   n = no + n1 + n2 + ... + nk
                                                   T = n1 + 2n2 + ... + knk
If only two years of recoveries are available k=1, and

                                          
T
n     = 

n1
no  +  n1

    =  
s

1  -  s    - 
2s2

1  -  s2     = 
s

1  +  s  

 and this gives an estimate of s as

                                                                s^   = 
n1
no

                                                       (10.15)   

which is what one might intuitively expect--that recoveries in two success ive
years differ only by s (or this can be obtained by use of equation (10.2)).

If k=2 a somewhat more complicated equation can be obtained f o r
estimating s directly (Robson and Chapman, 1961:188), but for larger values o f
k one must resort to trial and error (iterative) methods or to tables (Robson
and Chapman, 1961).  Hand calculations are not too awkward, and a s t a r t i n g
value can quickly be obtained from equation (10.15).

An estimate of the variance of the estimate is obtained from:

                                       v s n

s s

k s

s

k

k

( *)

( )
( )
( )

( . )=

−
− +

−

−

+

1

1
1

1
1

10 16

2

2 1

1 2

                                           

An examination of equation (10.16) shows that as k becomes large, the t e r m
involving k tends to become very small, so that the equation reduces t o
equation (10.7), as it should.  With these results, the investigator can d e t e r m i n e
approximately what the effect will be of estimating survival from only part o f
the recoveries, as opposed to waiting until all tagged individuals are q u i t e
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surely dead.  If s is not quite small, there may be a substantial difference in t h e
variability between the two situations.  An estimate of the reduction i n
variability resulting from using all of the recoveries can be obtained b y
dividing equation (10.7) by (10.16):

                                                        
v ( ŝ)
v ( s * )  =

.
   1 - 

(k+1)2sk (1 - s)2

(1-sk+1)2                  (10.17)     

Some selected values are as follows:

                                                                   k

s               1                     2 3         4                6            8              10

0.10 0.669 0.927 0.987 0.998 1.0 1.0 1.0
0.20 0.444 0.766 0.918 0.974 0.998 1.0 1.0
0.30 0.290 0.581 0.785 0.900 0.982 0.997 1.0
0.50 0.111 0.265 0.431 0.584 0.806 0.921 0.970
0.70 0.031 0.081 0.145 0.219 0.384 0.544 0.680
0.90 0.003 0.007 0.014 0.022 0.043 0.071 0.104

Inspection of the above table shows the advantage of basing survival est imates
on as many periods of recovery as possible.

Example 10.2 Analysis of incomplete data

For an example of "segment" calculations (Eq. 10.14), we again use
Rutherford's data, and suppose that only the first 4 classes are
available for estimation.  Then:

                                                       n = 45+23+19+10=97

                                                       T = 23+2(19)+3(10)=91

                                                           x
_

   = 
T
n   = 

9 1
9 7   = 0.9381

and we enter the tables given by Robson and Chapman (1961) and
Seber (1982:584). In the column corresponding to k = 3 (4 classes) and
find 0.938 to correspond to s = 0.62. A convenient alternative is to use
SOLVER in EXCEL. A variance estimate (Eq. 10.16) is:

                                   v(ŝ  ) = 

1
9 7

1

0.62(0 .38)2 -
16 (0 .62 )2

( 1 - ( 0 . 6 2 ) 4 )2

    = 0.003816

which is much larger than the variance for the complete set of data
(0.00044).

10.5 Testing assumptions                                             

The assumption of constant survival and recovery rates is one likely t o
be violated in many actual situations.  We will look briefly at some of t h e
effects of changing rates in a later section.  Here we consider ways of l ook ing
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for bias.  Probably the most useful technique is to have a thorough know ledge
of the circumstances in which the data were obtained, and to examine t h e
prospects for any major change that might influence either survival o r
recovery rates.  Another considerable help is to have a rather long series o f
comparable data to examine for any persistent trends.  Most b i r d - b a n d i n g
experience, for example, shows that juveniles have a markedly lower s u r v i v a l
than do adults. Hence one either tries to band mostly adults or deals w i t h
juveniles separately.

Some statistical tests may also be considered.  One is just the o r d i n a r y
chi-square goodness-of-fit test, wherein the expected values are computed

from nx = nŝ  x and compared with the observations (no,n1,n2,...).  Substant ia l
departures from constant survival may show up in this test, but it isn't v e r y
sensitive, and failure to obtain a significant chi-square needs to be regarded a s
a necessary condition for use of the estimate but should not be regarded as a n y
substantial evidence against bias.

Fortunately there is a test for one of the major sources of error, i.e., a
difference in survival rate between the first recovery - class and s u b s e q u e n t
classes.  It thus serves very well to examine the effects of, for example, t a g g i n g
young animals.  The test is due to Chapman and Robson (1960) and is a c h i -
square with one degree of freedom:

                                                    X2 = 
( ŝ-s'o)2

T(T-1)(n-1)

n(n+T-1)2(n+T-2)

                                        (10.18)   

where ŝ   is obtained from the Chapman-Robson estimate of equation (10.4) a n d
s’o is the Heincke estimate of equation (10.10).

Example 10.3 Testing compatibility of first recoveries

The chi-square test for compatibility of the first recovery-class
with the remaining classes (Eq. 10.18) is readily illustrated on the
data of Example 10.1.  It requires Heinke's estimate of survival (Eq.
10.10):

                                            s'o = 
n - no

n    = 
1 3 4  -  4 5

1 3 4    = 0.6642

The chi-square test then is:

                              X2 =      

(0.714-0.6642)2

3 3 2 ( 3 3 1 ) 1 3 3

134 (465 )2 4 6 4
     = 

0.00248
0.00109   = 2.28

which is well short of the 95 percent significance level of chi-square.

The above test is "two-tailed", that is, operates so as to protect
one against either over- or under-representation of the first age-class.
If the investigator has good grounds for expecting a departure to be in
only one direction (e.g., if mesh size of nets is known to be the
critical factor, or greater vulnerability of young game animals), then a
one-tailed test may be in order.  This can be obtained just by
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considering the ratio of  ŝ   - s'o  to the square root of the
denominator of Eq. (10.18), and referring to tables of the normal
distribution for significance levels (the critical level for a one-
tailed) test at the 95 percent level of significance is 1.65 rather than
the 1.96 used for two-tailed tests).  If there were grounds to support
doing a one-tailed test here, one could calculate:

                                               z = 
0.714-0.6642

( 0 . 0 0 1 0 9 ) 1 / 2   = 
0.0498
0.033    = 1.5

which is again short of the 95 percent level (1.65).

The above are "large-sample" tests.  Chapman and Robson (1960:364)
point out that the appropriate "exact" distribution is the
hypergeometric, but also that for all practical purposes one may
substitute a table of binomial confidence limits, using the statistic
T(=n1+n2+n3+...) as "sample size" and T-n+no as "number of successes".
If the selected confidence interval (corresponding to chosen level of
significance) excludes s then one rejects the hypothesis of
compatibility of survival of the first age group with that of the
remaining recoveries. If the above tests suggest incompatibility of the
first recovery class, one simply drops that class and recodes his data,
so that no is now the first recovery-class retained, n1 the second, and
so on.  Calculations of survival and variance, etc., proceed just as
before, but its a wise precaution to repeat the above testing procedure
to make sure that the new initial recovery group is compatible with the
remainder.

Example 10.4 Combining years

In Example 10.1, a large number of geese were banded  in one year,
resulting in a substantial number of returns and quite a precise
estimate of the annual survival rate.  Often one must deal with much
smaller samples, and the question of combining a series of estimates may
then come up.  When all, or, virtually all, of the recoveries are in,
the procedure is very simple -- just add up the recoveries, and proceed
as before (Chapman and Robson 1960:357).  Some data on adult Canada
geese banded in Washington (Hanson and Eberhardt, 1971) provide an
example:

                                         Recoveries during subsequent years                                                          
Year        Number                                                                                          Recov.
banded    banded            no n1 n2 n3 n4 n5 n6 n7 n8 n9 Tot. Rate           
1950      43 1 2 1 1 1 6 .14
1951      40 2 2 2 1 7 .18
1952    133 1 4 8 7 6 1 2 1 1 4 0 .30
1953      13 1 1 .08
1954      25 3 2 2 1 8 .32
1955      30 3 2 1 6 .20
1956      49 1 2 3 1 1 1 9 .18
1957      38 2 1 2 2 1 8 .21
1958      45 5 2 2 2 2 1 3 .29
1959      34 1 1 1 1 1 1 6 .18
1960     18 2 1 3 .17

_________________________________________________________
     468 3 1 2 3 1 7 1 2 4 7 5 3 3 1 1 0 7 .23
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  T = 23 + 2(17) + 3(12) + 4(4) + 5(7) + 6(5) + 7(3) + 8(3) +9(1) = 228

                                                   ŝ   = 
T

n  +  T  -  1    = 
228
334

= 0.683

                                          v(ŝ  ) = 
228
334

[ 
228
334

-  
227
333

] = 0.0006506

We thus obtain an estimate of annual survival of .684 + 2(0.0006506)1/2

or confidence limits of 0.634 - 0.735 on the combined estimate.

When several years are combined, as above, it seems prudent to
examine the band recovery rates to see whether there is any evidence to
suggest a change that might invalidate the underlying assumptions (e.g.,
a change in reporting rates).  One simple procedure is just to do a chi-
square test against the overall recovery rate.  The calculations here
are:

                        Number           Number                       Recovery
Year                banded                    recovered           (qi)             rate                 (pi)       

1 9 5 0 4 3 6 0.1395
1 9 5 1 4 0 7 0.1750
1 9 5 2 1 3 3 4 0 0.3008
1 9 5 3 1 3 1 0.0769
1 9 5 4 2 5 8 0.3200
1 9 5 5 3 0 6 0.2000
1 9 5 6 4 9 9 0.1837
1 9 5 7 3 8 8 0.2105
1 9 5 8 4 5 1 3 0.2889
1 9 5 9 3 4 6 0.1765
1 9 6 0 1 8 3 0.1667
               _______             _____                     _______

4 6 8 107 (A) 0.2035 = p
_

   

and a handy formula for chi-square is (Cochran and Snedecor, 1967:240):

                      χ 2 26 5809 21 7738
0 1621

29 66=
−

= − =∑ p a pA

pq
i i . .

.
.

with 10 degrees of freedom, indicating strong evidence of a departure
from chance fluctuations in proportion recovered.

10.6 Life tables                            

The original and major use of a life table is to provide a c o n v e n i e n t
summary of survivorship data over the history of a given group of animals, a l l
born at nearly the same time (a "cohort" and hence a cohort table) or t o
provide a cross-section of current mortality experience in a population ( a
"current" life table).  As such, there should be no objection to life tables.
Unhappily many such tables have been constructed from band-recovery a n d



                                                                                                     10 .12

age structure data in ways that may greatly reduce the value of the data.  Most
of this section will be devoted to life tables as constructed from band r e c o v e r y
data.

The basic structure of the table is quite simple, although a variety o f
modifications and extensions has to be derived for various special purposes .
The structure of a "cohort" table is obtained as follows.  Most life tables s t a r t
out with an arbitrary number of newly born animals (usually 1000, or 10,000),
and have 4 main columns.  The first (x) column lists age at the beginning o f
the time interval (normally a year), the second (lx ) gives the number alive a t
the beginning of the year, while the third (dx) gives the number of dea ths
during the year, and the fourth column (qx ) represents the mortality r a t e .
Entries in a particular table might thus be:

x l   x  d   x  q  x     

0 1000 620 0.620
1 380 167 0.439
2 213 85 0.399
3 128 51 0.398
4 77 32 0.416
5 45 19 0.422
6 26 14 0.538
7 12 6 0.500
8 6 4 0.667
9 2 2 1.000

 Since the table begins with an arbitrary number of animals, the o n l y
really important data are those contained in the qx  column, which summar izes
the available information on mortality by age.  Some cohort tables do start o u t
with the actual number of individuals in a real group, and thus provide m o r e
information than does the "standard" table.  "Current" life tables are usua l l y
constructed in exactly the same way, but depend on different sources of da ta
(i.e., on current mortality experience of a population).

Construction of a cohort life table (also known as a "time specific" l i f e
table) from the recovery of marked animals at their death rests on t h e
intuitively plausible concept that the recoveries constitute a r e p r e s e n t a t i v e
sample of the fate of the entire group initially marked.  The method i n
common use is to sum up the total recoveries (n) over the years, and to r e g a r d
this total as a cohort, or "number initially at risk".  Thus n may be the f i r s t
entry in the lx column -- unfortunately many workers convert it to 1,000 o r
10,000, making it impossible (without additional information) to r e c o n s t r u c t
the actual data from their table.  Those individuals recovered in the first y e a r
are then regarded as mortalities (appearing in the dx column) and the f i r s t
year mortality rate is estimated as no /n.  In the second year it is assumed t h a t
there are n-no survivors (l1 entry) and the recorded deaths in that year ( n1)
appear in the d1 position and become the numerator in the mortality (q1)
est imate:

                                              q1 = 
n1

n  -  no
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continuing the process yields mortality rates for each year up to the las t
recoveries (nk ) whereupon the last year's mortality rate becomes nk /nk  = 1.

It thus turns out that the first entry in the table corresponds to t h e
Heincke estimate of equation (10.10), and each successive entry corresponds t o
the same estimate, with previous recovery-class disregarded.  Thus t h e
estimates are not what they have been claimed to be, that is, age-spec i f i c
mortality rates.  They are instead estimates of a constant rate for the whole se t
of recovery data, and the supposed life table is not at all what it is n o r m a l l y
expected to be.  Furthermore, as we have seen from equation (10.13) using t h e
Heincke estimate amounts to discarding a sizable fraction of the available data.
Some workers did "combine" the several estimates by weighting each q x
estimate by the apparent sample size (nx ), giving:

                                       

no
n  n  +  

n1
n - no

 ( n - no )  +  . . .

no  +  2 n1 +  3 n2 +  . . .     = 
n

n  +  T                          (10.19)  

which is the Lack-Haldane estimate, and thus may well be the only r e a l l y
useful estimate in the whole table.  If the actual numbers recovered a r e
entered in the table (rather than converting to 1000 or 10,000 for the lo e n t r y )
then it is feasible to go back and use the chi-square test of equation (10.18) o n
the data.  Sometimes the total number of recoveries is given separately, so t h a t
it is possible to reconstruct the original data from the table, even though lo i s
1000 or 10,000.  At worst, one can look down the qx column to see whether t h e
apparent mortality rates do change -- but this is seldom a very h e l p f u l
practice in view of the substantial variability of the Heincke estimates.

Perhaps the best summary statement about cohort tables based o n
recovery data is that they should not be constructed in the first place.  If t h e 
basic assumption is fulfilled (constant survival) then each entry est imates
exactly the same quantity!  If survival rates are not constant over the yea rs ,
then the structure of the various estimates can be illustrated by writing o u t
the value for the first one:

        qo = 
no

n  -  no
    =  

pN(1-  s1)
pN(1-s2)s1+pN(1-s3)s1s2 + ... +pN(1-sk+1)s1s2...sk

   (10.20)   

where p = recovery rate, N = population tagged, and the si  are annual s u r v i v a l
rates.  Thus only if the si  are all equal to s, do we get conditions for a va l id
est imate.

When one uses data based on a group of animals all marked at the s a m e
time, the applicable life table concept is indeed that of a cohort.  However, t h e
data are nonetheless at times used to construct a current life-table (also ca l led
a "dynamic" table, and perhaps more accurately so in the present context).

The usual practice seems to be to regard the ratios of success ive
recovery- classes as estimators of current survival rates, so that:

                                                                     qx = 
nx

nx - 1
  

and using the notion of equation (10.20):
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                                qx = 1 - 
pN(1-sx)s1s2...sx-1

pN(1-sx-1)s1s2...sx-2     = 1 - 
(1-sx)sx-1

1-sx -1                 (10.21)  

so that, if survival is constant in two successive years, the method does p rov ide
a valid estimate.  The existence of changing survival rates evidently will r e s u l t
in a bias.  Perhaps a more serious drawback is that the samples usua l l y
obtained are so small as to result in substantial variability in the year to y e a r
estimates.  In the majority of cases, it is likely that only the first two or t h r e e
recovery groups are large enough to justify much confidence in the mor ta l i t y
est imates.

One technique used to reduce the effect of small samples is to c o m b i n e
the recoveries from a number of years of marking, producing what i s
commonly called a "composite" life table.  Sometimes this is done with pa r t i a l l y
incomplete data.  That is, there may be one (or more) sets where all of t h e
recoveries are available, plus several sets where banding was done r e c e n t l y
enough so that there is likely to be a number of marked individuals yet a l ive .
In such circumstances an adjustment may be introduced to compensate for t h e
incomplete nature of the data.  The adjustment takes the form of computing f o r
each year a "number of marked individuals available."  The trick is simply t o
add up the total number actually banded during the period of interest. Th is
total is regarded as the number "available", and the first year recoveries a r e
divided by that number to generate a "do" class.  If the most recent year o f
banding did not contribute to the second year recoveries then the n u m b e r
banded in that year is subtracted from the total banded, and the remainder i s
used as a divisor to generate "d1" from the second year recovery.  The p rocess
continues until the number banded in the first year is used as divisor for t h e
last recovery class.  Some better methods for calculating survival rates f r o m
incomplete data are available, and will be described below.

In summary, many of the methods for generating life tables f r o m
banding data are of very dubious utility.  The "cohort" method does not do w h a t
it is supposed to do at all, and the "current" method suffers seriously f r o m
small samples.  There is, of course, no reason to object to the construction o f
life tables from data obtained by recovery of banded animals. The point is t h a t
survival estimates should be obtained by the best methods available and t h e n
used to construct a life table.  The methods already described are quite s imp le
and should normally be less trouble to use than the supposed life table method.

10.7 Catch-curves and kill-curves                                                              

It was mentioned above that the Chapman-Robson analysis w a s
originally developed for catch curves but applies equally well for b a n d i n g
data.  It thus follows that there is little need to recapitulate the methods o f
estimation already described.  It is necessary, though, to note some pitfalls f o r
the unwary and changes in assumptions.  In band-recovery studies, o n e
usually has a known population (the total number banded) under study, a n d
obtains recoveries over a number of time intervals.  The essential assumpt ions
are that survival remains constant (or nearly so) and that recovery rates o f
dead animals also remain constant.  On the other hand catch-curves or k i l l -
curves usually depend on an age-classification of a group of animals ta k e n
nearly simultaneously (by fishing or hunting) and thus born over a n u m b e r
of years. Constant survival is again a necessary assumption, while t h e
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assumption of constant recovery rates is now replaced by one of e q u a l
"catchability" (vulnerability to the harvest method) for each age g r o u p .
Unfortunately a third assumption has also to be added in that it is also r e q u i r e d
that each age-group initially exist in equal numbers.

In fisheries studies there is often a problem with the second assumpt ion
- - younger fish may be less readily taken by the fishing methods (e.g., m e s h
size of nets).  This problem is usually dealt with by restricting the analysis t o
start with the first age group considered to be "fully vulnerable to the g e a r "
(which can be checked out with the chi-square test of equation (10.18)). Most
fish have a tremendously large reproductive potential so that it seems that t h e
link between size of mature stock and numbers of new recruits may at least b e
tenable for several years in a row.  This is not to deny, of course, t h e
importance of spawner-recruit relationships.  The major point is that c a t c h -
curves seem to be rather more useful in fisheries work than do kill- curves i n
studies of hunted populations, and it seems likely that the chief difficulty m a y
lie in the third assumption.  Most game populations do not appear to have a
sufficiently constant recruitment to permit use of survival estimates from k i l l -
curves for more than very rough estimates.

10.8 Combining estimates from several years                                                                                  

 In many cases the available recovery data will come from a number o f
years of banding.  There then may arise the need to combine several sets o f
data to produce a single survival estimate.  As always, one should not b l i n d l y
combine data from different years but should first examine the ind iv idua l
estimates (along with the standard errors), and review the prospects of a n y
major change between the years in question.  All too often recoveries from a
single year's banding constitute a very small sample, and they may have to b e
combined with other years.

The simplest situation arises when there are complete sets of r ecove r i es
for a number of years.  One then simply adds together the corresponding y e a r -
classes (i.e., numbers of recoveries 1,2,3,... years after banding) and uses
equation (10.6) to estimate survival, and (10.7) to estimate variance of t h e
est imate.

When the data are incomplete, as discussed in Section 10.4, t h e
calculations become somewhat more tedious.  The usual set of data may b e
represented by the following table:  

                                         "Age" at recovery                                 
Maximum age
at recovery 1 2 3 x Totals                                
k . . . . nk
3 d13 d23 d33 n3
2 d12 d22 n2
1 d11 n1
                               _____________________________________________________

Totals d1 d2 d3 dx Σnk = Σdx
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Here the rows are sets of recoveries from a given year of banding, with t h e
most recent year at the bottom -- hence the maximum "age" at recovery is o n e
year.  The row totals ( nk ) are thus the total number recovered from a g i v e n
year of banding, while the column totals reflect the total numbers that h a d
been "at large" for a given number (x) of years.  "Age" is necessarily r e c k o n e d
from banding, so that animals banded as adults may in fact be app rec iab le
older than implied by the terminology here.

Actual survival estimates from the above table are obtained from t h e
following equations (Gilmartin et al. 1993):
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where Tk is computed for each row in just the same way that T was obtained f o r
equation (10.6), i.e.;
                                                     T3 = d13 + 2d23 + 3d33

The solution of equation (10.22) depends on iteritive methods just as i t
did for equation (10.14), to which it is closely related -- in fact (10.22) may b e
obtained by summing equation (10.14) over the total number of years o f
recovery (i.e., sum on k).  Similarly, equation (10.23), stems from summing t h e
equation (10.16).

The method described above was obtained by Haldane (1955) and i s
fairly well-known as "Haldane method."  It may be repeated that a p r u d e n t
investigator will use equations (10.14) and (10.16) to investigate at least part o f
the individual years before settling on a combined estimate.  If no banding w a s
done in one or more years it is still feasible to use equations (10.22) and (10.23);
one just enters zeroes for the years of no banding. Gilmartin et al.(1993) used
monte carlo methods to study the variance equation and found that it g a v e
confidence limits that were too wide, so resorted to bootstrapping to es t imate
confidence limits.

Example 10.5 An example of Haldane's method

For an example of combining incomplete data, we use some band
returns data on Canada geese banded in Washington (Hanson and Eberhardt,
1971) as adults:
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Year            No.            Maximum age              "Age at recovery"
banded        banded                at recovery           0          1           2           3           4            5             6          Tot.                                                                                      

1 9 6 1 1 4 6 3      0     2      1   0   0      0            6
1 9 6 2 1 5 5            0      2     0      0     1     0                      3
1 9 6 3 28                     4              4      4      1     1     0                            10
1 9 6 4 4 5 3            3      2      2     6                                   13
1 9 6 5 10                     2              0      1      0                                            1
1 9 6 6 0                      1              0      0                                                     0
1 9 6 7 15                     0              2                                                             2

__________________________________
                                                          12      9      5      8     1     0      0             35

We first compute Tk and nk for each row in just the same manner as T was
computed before:

   T6 = 2(2) + 3(1)         =7        n6 = 6
                                       T5  = 2 + 4(1)             = 6        n5 = 3
                                       T4 = 4 + 2(1) + 3(1) = 9        n4 = 10
                                       T3 = 2 + 2(2) + 3(6) = 24      n3 = 13
                                       T2 = 1                                          n2 = 1
                                       T1 = 0                                          n1 = 0
                                       To = 0                                           no = 0

and s is estimated by solving equation (10.22) by trial and error. One
sets up the table above in EXCEL and computes the components of equation
(10.22) in two columns, sums these and varies s until the two column
sums are equal. If there are several examples to compute, the solution
might be obtained with SOLVER.

10.9 Regression methods                                             

Recalling equation (10.2):
                                                              E(nx) = Noλsx

If we take logarithms:
                                                log E(nx) = log(Noλ ) + x log s                               (10.24)

and ordinary linear regression methods might be used to fit observed data a n d
to estimate s as the slope of the regression of   log nx  on years since b a n d i n g .
Such a procedure has the additional merit that one can examine the p lot ted
data for any evidence of non-linearity, and hence for prospects of a change i n
survival with time.

A disadvantage of the regression method is that band recovery data do
not conform to the requirements for regression estimation.  Chapman a n d
Robson (1960) suggest an improvement in some cases may be obtained b y
u s i n g
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                                                              log nx - 
1

1nx +

as the independent variable (rather than just log nx ).  They f u r t h e r
recommend dropping all observations beyond the point where nx  is less t h a n
5.

It is important to realize that the regression equation estimates log s,
and not s.  If natural logarithms are used, the quantity
        
                                                            i = loge s

is the "instantaneous" rate of survival, and is rather widely useful in f i s h e r i e s
work as such.  A natural temptation is to antilog the estimate of log s for a
direct estimate of s; unfortunately this yields a biased estimate and t h e r e
doesn't seem to be much to do about it unless the samples are large. But w i t h
quite large samples the bias may not be important.

Paulik (1963) developed another regression-li ke method based on t h e
fact that recoveries in a number of years approximately follow t h e
multinomial distribution (this was mentioned in Section 10.2).  His results s e e m
to offer an improvement over the simple regression estimate (10.24).  His
estimate is:

                                    log ŝ   =  
Σ jn j y j  - [(Σnj y j )(Σ jn j )/Σnj

Σ j 2n j  -  [ (Σ j n j )2 /Σ nj ]
                               (10.25)  

where j = 1,2,3... denoted the year of recovery (with the first year's r ecove r i es
now numbered as n1 rather than no as before).  Also;

                                                            yj  = loge(
nj
N   )

which is the natural logarithm of the proportion (of N banded) in the jt h y e a r .
Paulik recommended deleting observations beyond the point where
nj = 10.

Since this method also estimates the logarithm of s and not s directly, i t
may be best applied in circumstances where interest is not so much i n
estimates of annual survival, but is rather directed towards components of t h a t
survival rate, expressed in terms of the instantaneous rates.  That is, f i s h e r i e s
workers customarily write
                                                                s = e-(F+M)

where F = mortality rate (instantaneous) from fishing and M = mortality r a t e
(instantaneous) from other causes (the "natural" mortality rate), and t h e
regression methods thus estimate the quantity F+M directly.  Any aux i l i a r y
information on the intensity of exploitation during the time periods when t h e
data were collected may potentially permit an estimate of the re l a t i ve
contribution of F to total mortality.

One other reason for considering estimates of log(s) rather than s i s
that log(s) may be roughly normally distributed.  This may be a cons iderab le
advantage in making tests of comparisons or in setting confidence limits.  I f
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log(s) is normally distributed, then the antilog elog s will be l ogno rma l l y
distributed (and thus have a skewed distribution -- awkward for m a n y
purposes . )

10.10 Effect of changes in survival                                                                

We recall that one of the key assumptions in the analysis of both b a n d
recovery and kill-curve data is that the survival rate remain constant over t h e
period of study.  In practice, survival undoubtedly does vary from year to y e a r .
If the annual fluctuation are not large and are more or less "chance" even ts ,
presumably the estimates may provide some sort of average value. Very of ten ,
though changes in survival rate may persist for several years. This i s
especially true for exploited populations, where shifts in m a n a g e m e n t
regulations may induce changes in survival.

Not a great deal is known about the effect of persistent changes on
estimation of survival, but some indication of trend can be supplied.  We first
consider band recoveries, and assume the recoveries come from an exploited
population (tags are recovered from the harvested animals).  Suppose fishing
or hunting (Fx ) and natural (Mx ) mortality operate together over the year
(and remain constant during the year) but change from year to year. If we let

                                                     fx = 
Fx

Fx+Mx
   

then the estimate of survival from recoveries is approximately:

 
E(T)

E(n+T)    =

 
E(n1)+2E(n2)+3E(n3)+...
E(no)+2E(n1)+3E(n2)+...                                                                       (10.27)  

               = 
f1(1-s1)so+2f2(1-s2)sos1+3f3(1-s3)sos1s2+...

fo(1-so)+2f1(1-s1)so+3f2(1-s2)sos1+4f3(1-s3)sos1s2+...  

               = so [
f1(1-s1)+2f2(1-s2)s1+...

fo(1-so)+2f1(1-s1)so+...  

Thus if the samples are large enough to permit the operation o f
equation (10.27) -- one would really prefer to find E(T/n+T) which is not t h e
same as what we have above -- it appears that the "dominant" quantity in t h e
estimate is so, or survival in the first year.  One might expect that result b y
inspection of the recovery data, since the first two classes (no and n1) a r e
necessarily expected to be the largest.  The effect of some postulated change i n
survival rates can be determined by considering the sequence of s u r v i v a l
rates in equation (10.27).  For example, suppose survival has been i n c r e a s i n g
so that so > s1 > s2.  Then (1-s1) > (1-so) and (1-s2) > (1-s1), and so o n .

Consequently the overall estimate will be less than so.  One might thus write:

                                            s^   = so(bias)
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Any quantitative appraisal of the bias term will evidently depend on a
numerical evaluation of equation (10.27) for which one needs to k n o w
survival rates. Furthermore, changes in survival are likely also to affect the fx
terms, inasmuch as the fraction taken by exploitation will no doubt a lso
c h a n g e .

While the situation above is rather complex from an ana ly t i ca l
standpoint, the circumstances are not difficult to mimic via c o mp u t e r
simulation.  A limited effort along those lines (Eberhardt, 1972) led to t h e
following set of recommendations:

(1) The Chapman-Robson (Lack) equation for estimation of s u r v i v a l
from banding recoveries is clearly the best of those studied.  The o t h e r
methods have variances which are usually at least twice as large.

(2) Both Chapman-Robson and Heincke estimates should always b e
computed and used to test the compatibility of the first year of returns ac tua l l y
used with those of later years.  If the test is significant, one may simply d r o p
the first year, and proceed with the remaining data.

(3) In the case of incomplete data (banded individuals still alive a t
analysis) or a prior evidence of a marked change in survival rates, t h e
segment method is available, but variability of the results is d i scou rag ing l y
large unless the data are nearly complete.

(4) Combining results of a series of years of banding may take two
routes .

( a ) If it appears that there is a marked change in survival, o n e
probably has to depend on a year-to-year analysis--this is an area n e e d i n g
further investigation.

( b ) If it appears that survival rates have not c h a n g e d
appreciably, then those years for which complete data are available c a n
simply be added together and analyzed with the Lack formula (justification f o r
this statement appears in the appendix to Eberhardt (1972)).  If part of the da ta
is incomplete, then the Haldane formula is called for.

(5) It was provisionally suggested that, even in the face of c h a n g i n g
rates, the Chapman-Robson and/or Heincke methods give estimates of f i r s t -
year survival which likely are not very much biased.  An exception is the case
where rates change in the second year, as may be expected if f i r s t - y e a r
recoveries of juvenile banding are used.  However, the Chapman-Robson tes t
provides good protection against that eventuality.

(6) If all else fails, and samples are indeed large, one might look at ra t ios
of successive groups of returns (i.e., use the "current" life table) and obtain a n
average survival rate.  Even so, it is probably advisable to simply drop t h e
smaller frequency groups (say below 10 returns).

(7) There seems to be little reason to continue the practice of life- t ab le
analysis of banding data.  Under the requisite assumptions, all of t h e
information in a "cohort" table appears in its first line, and in the form of a
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Heincke estimate, which has a variance appreciably larger than that of t h e
preferred method.  Use of the method thus amounts to throwing away data t h a t
are often rather expensive to obtain.  As suggested above (6), it may b e
necessary to examine data on a year-to-year basis--essentially in a " c u r r e n t "
life table, but the variances of such estimates are discouragingly large. T h e
evidence from this study suggests that the Chapman-Robson (Lack) me thod
will often give a useful estimate of first-year survival, and that very l i ke l y
will be all that can effectively be salvaged.

Much the same sort of analysis can be carried out for kill-curves.  I n
analogy to equation (10.2):

                                             E(nx) = λNs1s2...sx...

                                           = s1 [  
1+2s2+3s2s3+...
1+2s1+3s1s3+...  

and we can again consider changes like s1 > s2 > s3 and their qualitative e f f ec t
on a bias term:

                                                      s^   = s1(bias)
It is perhaps worth noting what happens if survival remains constant for
several years, e.g.:
                                                s1=s2=s3 > s4=s5=s6

if we let s1 represent the recent series and s2 the older series of rates, we have

                                              
E(T)

E(n+T)   = s1 
1+2s1+3s12+4s12s2+...

1+2s1+3s12+4s13+...
  

so that, unless survival is unusually high so that the later terms have a n
influence, it seems evident that the estimate will be very close to s1, apart f r o m
the effects of sampling variation.

A similar analysis can be carried out for the Heincke estimate (equation
(10.10)):

                                             
E(n-no)
E ( n )    = s1 

1+s2+s2s3+...
1+s1+s1s2+...                                        

(10.29)   

A crucial assumption in the above is that recruitment remains cons tan t ,
i.e., that we can consider N to be a constant in developing equations l i k e
(10.28).  As we have already remarked, this is frequently an u n w a r r a n t e d
assumption, and this largely negates direct use of the methods thus f a r
described for kill-curves of many populations.

10.11 Use of telemetry to estimate survival

Radiotelemetry  offers substantial  advantages  over depending on tag
returns for estimating survival. Conceptually, the actual time of death will be
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known and it may be possible to determine the cause of death for non-harvest
mortalities. Under such circumstances a simple binomial model may suffice for
analysis. Very likely the most widely known analysis is that of Heisy and
Fuller (1985). They proposed  estimating a daily survival rate as:

Where xI is the total number of transmitter-days, and yI is the total number of
deaths in some interval, i. An important precaution is to select an interval in
which conditions are likely to be relatively constant. It may be necessary to
consider several such intervals that span the total period of interest. For a
single such interval the survival rate may be estimated as:

Combining rates for several intervals is then accomplished by multiplying the
rates for the several (I) intervals

10.12 Kaplan-Meier estimates of survival

An important problem in survival estimation is lack of knowledge of the
fate of individuals. The difficulty is severe when tags or bands are recovered
by sampling as in hunting and fishing, but  is also important in the capture-
recapture methods. Conceptually , it should be a minor concern in
radiotelemetry studies where one might suppose there is virtually absolute
knowledge of the fate of individuals. However, this is not always the case.
Radios do fail on occasion, as do the attachments, and the lost radiotag may not
always be promptly recovered. Also, radiotagged individuals may emigrate out
of the study area, which may pose a special problem that needs to be
considered in the study design.

The problem of the loss of identity of individuals turns up in various
other circumstances. It is particularly important in medical studies, where the
long-term fate of patients given some treatment needs to be followed for many
years. Various forms of “life-testing” also bring up the issue, inasmuch as
some items may be removed from the study for reasons that have no bearing
on the duration of life of the item. These difficulties led to a study of ways to
deal with the incomplete observations by Kaplan and Meier (1958). It has been
proposed that their methods for compensating for inadvertent losses be used
in radiotelemetry studies. (Pollock et al. 1989).

The basis for the Kaplan-Meier approach is to handle the individuals
lost from the study (“censored” observations) by breaking the records down in
intervals and estimating survival separately for each such interval. Overall
survival for a longer period is estimated from the product of the individual
intervals just as in equation (10.32). It turns out that the approach of Heisy and
Fuller (1985) described above can be used to give essentially the same results,
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but it is worthwhile to contrast the two methods inasmuch as the calculations
proceed somewhat differently.

Kaplan and Meier (1958) term their procedure a “product-limit”
estimate. It depends on a sequence of events (deaths and losses from
observation) that  are assumed to be mutually exclusive in terms of the time of
occurrence, i.e., occur at different times. They suggest “fudging” a  little if two
events are recorded at the same time. If data are recorded by day, there may
not be much need for “fudging”. Very likely losses from observation may be
less-accurately recorded as to date, and Kaplan and Meier (1958:461)
recommended that “deaths recorded as of an age t are treated as if they
occurred slightly before t, and losses recorded as of an age t are treated as
occurring slightly after t” (this is only necessary if two events are recorded at
exactly the same time).

To introduce the basic scheme, we assume no losses and consider only
deaths as events, plotted along a line representing the time span (of length LI)
being considered.

+------*-----------*------------*---------------- …  ---*----------*------+
0           1                 2                3                                             d-1           d          L

If d deaths occur and the initial population size is N, then probability of the
first death is 1-(1/N), and given that event, then the probability of the second
event is 1-[1/(N-1)], and so on, with the probability of d deaths being the
product of the individual terms:

Rearranging gives:

Cancelling like terms in numerator and denominator reduces the result to:

Which is what one would expect, i.e., survival rate equals 1 – mortality rate.

The approach of Heisy and Fuller previously discussed might be labeled
the  “radio-days” method for convenient reference. It uses a daily survival
rate and estimates survival for the same span (LI) as:

Where X is the sum of the days lived by the animals dying in LI  plus the (N-d)
L I days from animals that did not die during the observed time span. Thus the
product-limit (Kaplan-Meier) method uses a mortality rate based on population
size while the “radio-days” method expands a daily rate to the overall interval
used. The time span considered can be varied to accommodate one’s immediate
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purpose. Pollock et al. (1989:Table 1) illustrate the method using weekly data.
Their Table 1 with Heisy-Fuller calculations added shows the agreement
between the two methods:

Heisey-
Number Kaplan-Meier Cumulative Cumulative Fuller

Week at risk Deaths Censored Survival weeks deaths Survival

1 1 8 0 0 1 1 8 0 1
2 1 8 0 0 1 3 6 0 1
3 1 8 2 0 0.8889 5 4 2 0.8930
4 1 6 0 0 0.8889 7 0 2 0.8905
5 1 6 0 0 0.8889 8 6 2 0.8890
6 1 6 1 0 0.8333 102 3 0.8360
7 1 5 0 0 0.8333 117 3 0.8337
8 1 5 1 1 0.7778 132 4 0.7818
9 1 3 1 2 0.7179 145 5 0.7292

1 0 1 0 1 1 0.6462 155 6 0.6738
1 1 8 0 0 0.6462 163 6 0.6620
1 2 8 0 1 0.6462 171 6 0.6514
1 3 7 0 0 0.6462 178 6 0.6403

The data above are cumulated over the span of the study, which, as no ted
previously, assumes constant survivorship. If there is reason to suppose t h a t
survival is not constant, then the data should be analyzed in blocks that a r e
more likely to have constant survival within a block. In many studies,
captures may go on throughout the course of the study. Kaplan and M e i e r
(1958) noted that these individuals can be added to the number at risk as t h e y
enter the study, and Pollock et al. (1989) dubbed such an approach as a
“staggered-entry” model, and illustrated it with weekly data on bobwhite q u a i l
(Colinus virginanus) survival. They provided a  convenient variance es t imate
[Heisey and Fuller (1985) resorted to a computer program for v a r i a n c e
est imat ion] :

                                                          v S t
S t S t

r t
[ √( )]

√( ) [ √( )]
( )

= −2 1
                               (10.35)     

where r(t) is the number at risk at time t. Data to illustrate the approach f r o m
their Table 2 appear below with variance estimates. In this case sequen t i a l
survival estimates [equation(10.33)] are multiplied [equation (10.32) to o b t a i n
an estimate of survival at the end of the current period. To use the Heisey-
Fuller approach on the data, one would have to determine how long t h e
individuals dying during the period (week) were alive during the period, so
that it is desirable to record radio-days as best possible. In the table below it i s
assumed that individuals censored were lost at the end of the period and a n y
added were introduced at the end of the period.
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Kaplan-Meier estimates of survival for bobwhite quail [from Pollock et a l .
(1989: Table 2)] with variance estimates.

Number Kaplan-Meier

Week at risk Deaths Censored Added Survival Variance

1 2 0 0 0 1 1 0
2 2 1 0 0 1 1 0
3 2 2 2 1 0 0.909 0.0034
4 1 9 5 0 0 0.670 0.0078
5 1 4 3 0 0 0.526 0.0094
6 1 1 0 0 0 0.526 0.0119
7 1 1 0 0 0 0.526 0.0119
8 1 1 2 0 0 0.431 0.0096
9 9 1 0 0 0.383 0.0100

1 0 8 0 1 0 0.383 0.0113
1 1 7 0 0 3 0.383 0.0129
1 2 1 0 0 0 6 0.383 0.0090
1 3 1 6 4 0 1 0 0.287 0.0037
1 4 2 2 4 0 5 0.235 0.0019
1 5 2 3 4 1 6 0.194 0.0013
1 6 2 4 4 0 0 0.162 0.0009
1 7 2 0 2 0 0 0.146 0.0009

10.13  More complex models for analysis of survival data.

Much of this Chapter has been devoted to what might now be t e r m e d
“classical” methods for estimating survival. The older methods r e m a i n
valuable as a background for understanding the newer approaches, and t h e y
provide tools for initial analyses and for planning studies. The major d r a w b a c k
in using these earlier methods is the restrictive assumptions that are r e q u i r e d
to justify the estimates. Section 10.10 provides some rough notions about t h e
outcome of using these estimates when the underlying assumptions a r e
violated.

The newer, “modern”, methods make it possible to use less res t r i c t i ve
and more realistic assumptions, and to take advantage of the computing p o w e r
now available on most desktops. A disadvantage of the newer methods is t h e
nearly universal dependence on computer programs. A major goal of t h e
present effort has been one of presenting the basis for many quan t i t a t i ve
methods without requiring the reader to use any more complex programs t h a n
are available on most spreadsheets, with specific reference to EXCEL. For t h e
most part, only basic statistical methods have been used. To use the n e w e r
methods, one needs to rely on computer programs, along with m o r e
sophisticated statistical methods.

A good starting-place for approaching “modeling survival and t es t i ng
biological hypotheses using marked animals” is the paper by Lebreton et a l .
(1992). They recommend (1) starting from a “global” model (essentially o n e
that includes all the parameters that may be relevant) and assess its fit, t h e n
(2) select a more parsimonious model (fewer parameters) using Akaike’s
Information Criterion (AIC), and (3) testing for the more important b io logica l
questions by comparing this model with “neighboring ones” using l ike l ihood
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ratio tests, and then (4) find maximum likelihood estimates of model
parameters with estimates of precision. Papers utilizing this general a p p r o a c h
are now steadily appearing in the ecological literature, and it appears l i ke l y
that the approach has become the “standard” method for studying survival.

Using AIC in biological studies is the subject of a recent book ( B u r n h a m
and Anderson 1998) that contains a good deal of practical advice on model
selection and inference. It appears, however, that these authors h a v e
developed doubts about the importance of a “global” model, at least in c o n t r a s t
to an earlier essay (Burnham and Anderson 1992), and they particularly w a r n
of the dangers of “data-dredging”, i.e., starting with a model with m a n y
parameters and discarding parameters by using AIC. The problem basically i s
that chance fluctuations in the data may seriously influence the outcome,
essentially in the manner that plagues stepwise regression (Section 1.12).
Burnham and Anderson (1998) thus recommend choosing a “pars imon ious”
model on largely a priori grounds. How one does that is still an open ques t i on
in many situations. However, the rapidly developing literature on mode l i ng
survival offers opportunities to select a few models that seem to be among t h e
top candidates and thus useful starting-places.

Lebreton et al. (1992) list a sizable number of computer programs t h a t
have been used to estimate survival and used RELEASE which is described i n
detail by Burnham et al. (1987) and SURGE 4.0, which was (and still may be) a
proprietary program. Fortunately, Dr. G. C. White has invested a great deal o f
effort in producing and updating program MARK which contains most of t h e
features of these earlier versions and is freely available through the Web Site
listed in Section 8.4.

10.14 Exercises

10.14.1 Calculate the Heinke estimator of survival and its variance for the da ta
of Example 10.1. Calculate the ratio of its variance to that of the Ha ldane
variance estimate [eq.(10.7)]. Compare this ratio to the value you get f r o m
eq.(10.13). Is there a difference? If so, explain.

10.14.2  Repeat the analysis of Example 10.2, then extend it to use the first 6
classes and calculate a variance estimate from eq.(10.16). Compare t h i s
variance estimate with that of example 10.1, and with the value of the r a t i o
tabulated below eq.(10.17). Discuss your results.

10.14.3  Check on the values tabulated for eq.(10.17) for k = 6 and explain t h e
trend from s = 0.1 to s = 0.9.

10.14. 4 Suppose that there were 55 recoveries in the first year after b a n d i n g
in Example 10.1 (instead of 45 recoveries). Compute the chi-square test f o r
compatibility of first recoveries and state the p-value.

10.14.5 Calculate the chi-square value for Example 10.4.

10.14.6  The following resighting data are for female monk seals on L a y s a n
Island. Calculate a survival rate as in Example 10.5. Compute a variance f r o m
eq.(10.23). As noted in Section 10.8, it likely is best to bootstrap for con f i dence
intervals, but the estimate should serve for comparison to the results o f
Exercise 10.14.7 below.
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Tagged 0 1 2 3 4 5 6 7
1983 1 0 1 0 1 0 9 8 9 9 6 6
1984 1 3 1 2 1 0 1 0 8 7 6 6
1985 1 4 1 0 9 9 7 5 5
1986 1 7 1 2 1 2 9 7 6
1987 1 5 1 3 1 1 9 7
1988 1 7 1 1 5 4
1989 1 3 6 6

10.14.7 The following data are resightings for female monk seals banded o n
French Frigate Shoals in 1984. Calculated survival from eq.(10.24) along with a
variance about regression (you can do this with EXCEL’s regression tool).
Compare this variance with that dound in Exercise 10.14.6. Also calculate s
from eq.(10.25) and compare with the results of eq.(10.24) and Exercise 10.14.6.

Tagged 1 2 3 4 5 6 7
39 35 35 33 30 28 26 26


